Bag-of-Audio-Words Approach for Multimedia Event Classification

نویسندگان

  • Stephanie Pancoast
  • Murat Akbacak
چکیده

With the popularity of online multimedia videos, there has been much interest in recent years in acoustic event detection and classification for the improvement of online video search. The audio component of a video has the potential to contribute significantly to multimedia event classification. Recent research in audio document classification has drawn parallels to text and image document retrieval by employing what is referred to as the bag-of-audio words (BoAW) method. Compared to supervised approaches where audio concept detectors are trained using annotated data and extracted labels are used as lowlevel features for multimedia event classification. The BoAW approach extracts audio concepts in an unsupervised fashion. Hence this method has the advantage that it can be employed easily for a new set of audio concepts in multimedia videos without going through a laborious annotation effort. In this paper, we explore variations of the BoAW method and present results on NIST 2011 multimedia event detection (MED) dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic Features for Multimedia Event Classification

Because of the popularity of online multimedia videos, there has been much interest in recent years in in multimedia event detection (MED) research. MED requires a system that can search user-submitted quality videos, like those found on YouTube, for specific events. Video features play a significant role is determining the content for MED tasks. However, the audio component for a given video c...

متن کامل

Audio self organized units for high-level event detection

High-level multimedia event detection aims to identify videos containing a target event. Recent approaches leveraging audio information for this task fall into two broad categories. The first corresponds to holistic bag-of-words approaches based on frame-level descriptors. These are effective for classification, but hard for humans to interpret. The second corresponds to approaches that build a...

متن کامل

ITI-CERTH participation to TRECVID 2012

This paper provides an overview of the tasks submitted to TRECVID 2012 by ITI-CERTH. ITICERTH participated in the Known-item search (KIS), in the Semantic Indexing (SIN), as well as in the Event Detection in Internet Multimedia (MED) and the Multimedia Event Recounting (MER) tasks. In the SIN task, techniques are developed, which combine video representations that express motion semantics with ...

متن کامل

Compact Audio Representation for Event Detection in Consumer Media

Local audio-visual descriptors are often compactly stored using representations such as the soft quantization histogram [1]. Typically, classification performance with histogram representations is improved through the use of large codeword sets. Unfortunately, this approach runs into overfitting and scalability challenges when applied to richly diverse real-world collections. A novel “i-vector”...

متن کامل

Robust audio-codebooks for large-scale event detection in consumer videos

In this paper we present our audio based system for detecting “events” within consumer videos (e.g. You Tube) and report our experiments on the TRECVID Multimedia Event Detection (MED) task and development data. Codebook or bag-of-words models have been widely used in text, visual and audio domains and form the state-of-the-art in MED tasks. The overall effectiveness of these models on such dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012